Adaptive Sampling with the Ensemble Transform Kalman Filter. Part II: Field Program Implementation

نویسندگان

  • S. J. MAJUMDAR
  • C. H. BISHOP
  • B. J. ETHERTON
  • Z. TOTH
چکیده

The practical application of the ensemble transform Kalman filter (ET KF), used in recent Winter Storm Reconnaissance (WSR) programs by the National Centers for Environmental Prediction (NCEP), is described. The ET KF assesses the value of targeted observations taken at future times in improving forecasts for preselected critical events. It is based on a serial assimilation framework that makes it an order of magnitude faster than its predecessor, the ensemble transform technique. The speed of the ET KF enabled several different forecast scenarios to be assessed for targeting during recent WSR programs. Each potential observational network is broken down into idealized routine and adaptive components. The adaptive component represents a predesigned flight track along which GPS dropwindsondes are released. For a large number of flight tracks, the ET KF estimates the forecast error reducing effects of these observations (via the ‘‘signal variance’’). The track that maximizes the average forecast signal variance within a selected verification region is deemed optimal for targeting. Secondary flight tracks can also be chosen using serial assimilation, by calculating the signal variance for each flight track given that the primary track had already been selected. For the second consecutive year the ET KF was able to estimate, via a statistical rescaling, the variance of NCEP signal realizations produced by the dropwindsonde data. A monotonic increasing relationship between the ET KF signal variance and the reduction in NCEP forecast error variance due to the targeted observations was then deduced for the operational 2001 WSR program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a modified Cholesky decomposition is proposed. The method works as follows: the precision matrix of the background error distribution is estimated based on a modified Cholesky decomposition. The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on a series of rank-one...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

The 1000-Member Ensemble Kalman Filtering with the JMA Nonhydrostatic Mesoscale Model on the K Computer

The ensemble Kalman filter (EnKF) approximates background error covariance by using a finite number of ensemble members. Although increasing the ensemble size consistently improves the EnKF analysis, typical applications of the EnKF to realistic atmospheric simulations are conducted with a small ensemble size due to limited computational resources. The finite ensemble size introduces a sampling...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000